首页 行业报告下载文章正文

中国AIGC商业潜力研究报告(62页)

行业报告下载 2023年08月05日 06:31 管理员

预学习的出现解决了过去生成式大模型的痛点,但预学习本身存在模型尺寸、小样本数量、微调能力的不可能三角,解决方法也不尽相同:对于极 大模型,使用知识蒸馏;对于少样本学习能力,进行数据增强;对于监督训练表现欠佳的模型,进行提示学习。 以GPT为例,在目前阶段,厂商通常的做法是扩大模型尺寸。在AIGC概念实际落地的过程中,只有基础大模型与通用技术是远远不够的,还需要能与场景融合匹配,更需要支持应用落地的工具平台和开放包 容的创新生态,三者协同优化,加速AIGC落地。 

在全应用流程中,主要通过大量的无标注文本进行共性学习,获得预训练大模型,此后再根据应用场景特征进行微调,更好与项目任务适配。相比于信息模态单一的单模态模型,多模态模型可以同时处理更多模态的信息并将它们相互转化。 现今多模态模型以图文多模块为主。Transformer虽受制于单模态但其权重共享适用于多模态;ViT模型处理输入图片,使得Transformer可用, 从而打破NLP和CV间屏障;BEiT将生成式预训练从自然语言处理迁移到了计算机视觉;扩散模型多用于文本图像生成。多模态在视频分类、情感分析、语音识别等领域都得到了广泛应用,涉及图像、视频、语音、文本等融合内容,未来还将进入交互、感知、内容等 更多应用场景。

中国AIGC商业潜力研究报告(62页)

文件下载
资源名称:中国AIGC商业潜力研究报告(62页)


标签: 人工智能AI行业报告

并购家 关于我们   意见反馈   免责声明 网站地图 京ICP备12009579号-9

分享

复制链接

ipoipocn@163.com

发送邮件
电子邮件为本站唯一联系方式