人工智能在影视文娱,以及游戏等行业具备广泛的应用场景,核心主线就在于内容生产力的释放与升级方面。一方面,整体提升文娱产业工 业化水平,形成AI赋能全流...
2024-03-07 11 人工智能AI行业报告
研究人员主要是围绕已经开源参数的模型,例如 GPT-J[4]、OPT[43]以 及 BLOOM[51]等进行模型参数的剪枝。模型剪枝大体上可以针对具体关注 的参数单元和子网络情况,可以分为结构化剪枝和非结构化剪枝两种。结构 化剪枝方法在较高稀疏度的情况下可以达到可观的提速但是会带来一定程 度上的性能下降,而非结构化剪枝的方法虽然可以在较高稀疏度的情况下保 持性能,但是又难以在通用的硬件上带来实质性的加速[52]。同时,在之前 研究中常用的迭代式剪枝策略并不是完全合适,因为仍然需要多次训练大模 型,也会给下游用户带来较大的训练开销,因而如何 One-shot 地得到一个 合适的子网络供下游用户使用值得探索。同时,研究人员还在探索如何将剪 枝与其他模型压缩技术,如量化和蒸馏,相结合以进一步提高大型语言模型 性能和效率。这些技术的发展有望为推动人工智能技术的发展和应用提供有 力支持。 目前,针对像 GPT-3[4]这样的超大规模模型进行有效的模型压缩仍然存 在一些挑战。
这些挑战主要包括以下几个方面: 模型复杂度:超大模型通常拥有数十亿甚至数百亿的参数,导致整个压 缩过程的训练的计算量和内存消耗巨大,这对硬件要求非常高。超大模型的 结构往往非常复杂,由多个层和子网络组成。因此,压缩模型的过程需要考 虑如何剪枝模型、量化模型、知识蒸馏等多种技术手段的结合使用。模型压缩技术的局限性:当前已有的模型压缩技术可能无法直接适用于 超大模型。例如,传统的知识蒸馏方法可能无法有效地提取超大模型中的知 识,而结构化剪枝等方法在较高稀疏度的情况下可能会带来性能下降。并且 有研究表明,大型语言模型存在涌现能力,即当模型参数达到一定规模时才 会具有足够强的能力。同时,由于超大模型的结构复杂,可能需要一些特殊 的压缩技术来处理。因此,需要有一种通用的压缩方法,适用于各种类型的 超大模型。 模型的黑盒特性:目前的超大模型如 GPT-3 等均为闭源模型,用户无 法获取其具体的参数信息和结构信息。这使得在对模型进行压缩时需要使用 一些基于模型输出或中间层特征的方法进行知识迁移和蒸馏,增加了压缩的 难度。
标签: 人工智能AI行业报告
相关文章
人工智能在影视文娱,以及游戏等行业具备广泛的应用场景,核心主线就在于内容生产力的释放与升级方面。一方面,整体提升文娱产业工 业化水平,形成AI赋能全流...
2024-03-07 11 人工智能AI行业报告
中国移动自主构建语言、视觉、语音等多种类型大模型,具备跨行业供给侧增强、高可控性、异构软硬件灵活部 署几大显著的技术特色,整体性能指标实现国内主流水平...
2024-03-06 9 人工智能AI行业报告
大模型的兴起,打开了产业通向数据驱动、智能决策 时代的大门。此前IBM商业价值研究院曾在其《值得押 注的七大投资决策》报告中指出,未来十年,生成式 A...
2024-03-06 12 人工智能AI行业报告
这些发现表明 , 发达经济体可能更容易受到人工智能采用带来的劳动力市场变化的影响 , 这种变化在比新兴市场经济体和低收入国 家更短的时间内实现。鉴于发...
2024-03-06 9 人工智能AI行业报告
判断一项新科技浪潮是否已经对产业产生了巨大影响的有效方法之一便是去各大招聘网站搜索相关 新兴岗位出现的数量、种类及其薪资水准。一旦出现井喷之势,说明产...
2024-02-26 77 人工智能AI行业报告
最新留言