2023 年,全球可再生能源新增装机容量再创新高,达到 473GW,同比增长 13.9%,可 再生能源总装机容量达到 3.87TW。太阳能和风能继续主...
2025-01-13 76 新能源及电力行业报告
随着 Ni 含量的增加,循环性能变差。造成这一现象的主要原因是随着 Ni 含量增加在充 放电过程中发生了多次相变。根据《储能及动力电池正极材料设计与制备技术》介绍, 多元材料在高电压和高温下存储或使用,晶体结构的对称性降低,能量处于高度非稳定 态,不可避免地在材料颗粒表面率先向类尖晶石相、岩盐相畸变,并逐步往颗粒内部扩 展,对于高镍材料此类相变尤为突出。这些相变在轻微发生时,正极材料的比容量、倍 率特性、高低温性能、存储性能、安全性能等都会发生不可逆的劣化;严重时材料失效, 不再具有电化学活性,甚至伴随与电解液的热失控反应,引发起火、爆炸等安全事故。 低镍材料良好的循环性能主要是由于抑制了 H2-H3 的相变。随着Ni含量的增高,表面残碱增高。根据《高镍三元正极材料失效机制与改性》介绍, 高镍表面残余碱的来源主要归为以下三个途径。首先,在高镍三元正极材料合成过程中, 一般需要加入过量的含 Li+化合物(如 Li2CO3或 LiOH)来补充煅烧过程中锂的损失,但 是电极材料表面过量的 Li2O 会与空气中的 H2O 和 CO2反应生成 Li2CO3、LiOH;其次, 在电池充放电过程中,电解液分解的碳酸盐易与电极材料表面 Li2O 或锂负极产生的 Li+ 反应生成 Li2CO3;
最后,高镍合成过程中由于过渡金属分布不均匀,其表面存在很多的 镍元素,从而显碱性。这些导电性极差的碱性含 Li+化合物阻碍了电子和 Li+的传输。同 时,这些副产物因具有高的 pH 值,会使高镍材料在 NMP 溶剂搅拌过程中容易吸水,从而导致其凝胶化,影响三元材料的浆料涂布和电池存储性能;另外,在充放电过程中, 高镍表面残余 Li2CO3和 LiOH 会与电解液中的锂盐发生反应,从而产生 CO2等气体,导 致电池发生严重的气胀现象,甚至引发爆炸。随着 Ni 含量增高,热稳定性变差。根据《高镍三元正极材料失效机制与改性》介绍, 材料的热稳定性能与其安全性能密切相关,高镍正极材料在充放电过程中会产生一部分 Ni4+,而高价态 Ni4+具有很强的氧化性,可以氧化电解液中的成分,产生一系列的副反 应和 Ni4+→Ni3+或 Ni2+的还原反应,为了补偿 Ni 价态变化中电荷的损失,O2-会以氧气形 式进行释放。因此,相比低镍正极材料,高镍材料会脱出更多的Li+,生成更多强氧化性 的高价态 Ni4+,造成电池热稳定性能下降。此外,该材料不仅只有过渡金属元素在充放 电过程中参与氧化还原反应,而且晶格中的负氧离子也参与电化学反应,在长期循环过 程中易产生氧气,可能会与电解质发生反应,从而使它们具有极为复杂的电荷补偿及结 构老化失效机制,导致结构和成分的快速失效,甚至引发电池热失控。同时,该类材料 在电化学循环过程中易出现不断的电压衰减情况,导致其能量密度持续下降,严重制约大规模应用。
标签: 新能源及电力行业报告
相关文章
2023 年,全球可再生能源新增装机容量再创新高,达到 473GW,同比增长 13.9%,可 再生能源总装机容量达到 3.87TW。太阳能和风能继续主...
2025-01-13 76 新能源及电力行业报告
液态锂电池过热容易失控,产生各类安全问题。在使用过程中,过度充电、撞击、短 路、泡水等因素会导致电池热失控,导致燃烧、爆炸等安全风险。当液态电池温度上...
2025-01-13 99 新能源及电力行业报告
辐照加工技术应用主要集中在辐照灭菌、检验检疫以及物质改性。根据辐照所产生的的加速电压的不同,辐照加工的主应用种 类较多,包括辐照化工、辐照灭菌、环境保...
2024-12-31 67 新能源及电力行业报告
超高表面反射率的极细三角导电丝可使得电池表面的等效遮光面积降低到1%以下,SMBB约为3%、 0BB约为2.5%,我们预计叠栅+TOPCon的组件功率...
2024-12-26 88 新能源及电力行业报告
国内24年开始加大支持力度,全固态电池产业化节奏加快。国内液态电池技术大幅领先于海外,海外加码全固 态电池希望弯道超车,频繁宣传后续量产计划,引发国内...
2024-12-25 110 新能源及电力行业报告
根据 GWEC,预计全球风电新增装机从 2023 年的 116.6GW 增长到 2028 年的 182GW,CAGR 为 9.31%。其中,陆风新增装...
2024-12-25 65 新能源及电力行业报告
最新留言